Creatine

From WikiMD free wellness and medical encyclopedia
Jump to: navigation, search

{{#invoke:For|For}}

{{ safesubst:#invoke:Unsubst||date=__DATE__ |$B= {{#ifeq:{{ safesubst:#if: {{safesubst:#invoke:Ns has subpages|main}}

 | {{ safesubst:#titleparts:{{ safesubst:#if:|{{{1}}}|Creatine}}|1}}
 | {{ safesubst:#if:|{{{1}}}|Creatine}}

}}|Wikipedia:Template messages||{{#ifexpr:{{#if:|0|1}}+{{#ifeq:yes|yes|0|1}}

|{{#if:July 2013
 |{{#ifexist:Category:Use dmy dates from July 2013
   ||}}
 |[[Category:{{#if:
              ||Use dmy dates}}]]}}{{#if:
     |[[Category:]]}}}}}}

}}

Template:Sprotect2

{{#if:Creatine neutral.pngCreatine-3D-balls.png }} {{#if:Creatine-3D-balls.png|| colspan="2" style="text-align:center; padding:2px;" | {{#invoke:InfoboxImage|InfoboxImage|image=Creatine-3D-balls.png }} {{#if:| }} {{#if:|| colspan="2" style="text-align:center; padding:2px;" | {{#invoke:InfoboxImage|InfoboxImage|image= }} {{#if:| }} {{#if:|| colspan="2" style="text-align:center; padding:2px;" | {{#invoke:InfoboxImage|InfoboxImage|image= }} {{#if:| }} {{#if: || colspan="2" style="text-align:center; padding:2px;" |
{{{ImageCaptionAll}}}


{{#if:N-Carbamimidoyl-N-methylglycine; Methylguanidoacetic acid2-[Carbamimidoyl(methyl)amino]acetic acid| Template:Chembox_headerbar {{#if: |

}} {{#if: || colspan=2 style="text-align:left;" | IUPAC name{{#ifexpr:{{#if:|99|{{#ifeq:{{#invoke:String |match |s=_ |pattern=%<br%s*%/?%s*%> |nomatch=_NO_BREAK_|plain=false|ignore_errors=false}}|_NO_BREAK_|0|9}}+{{#if:|1|0}} }}>1|s|}}


{{#if: || colspan=2 style="text-align:left;" | Preferred IUPAC name

{{#if:|}}


{{#if:2-[Carbamimidoyl(methyl)amino]acetic acid || colspan=2 style="text-align:left;" | Systematic IUPAC name

2-[Carbamimidoyl(methyl)amino]acetic acid
{{#if:|}}


{{#if:N-Carbamimidoyl-N-methylglycine; Methylguanidoacetic acid || colspan=2 style="text-align:left;" | Other names

N-Carbamimidoyl-N-methylglycine; Methylguanidoacetic acid


}} Template:Chembox Identifiers Template:Chembox Properties Template:Chembox Thermochemistry Template:Chembox Pharmacology Template:Chembox Hazards Template:Chembox Related


{{#ifexist:

}} {{#ifeq:yes|no||| colspan=2 style="text-align:left; background:#f8eaba;" | {{safesubst:#switch: yes {{#ifexpr:{{#ifeq:changed|changed|1|{{#if:464366517|1|0}}}}|
{{#if: |{{{Name}}}
Creatine}}
{{#if:Creatine neutral.png {{#invoke:InfoboxImage|InfoboxImage|image=Creatine neutral.png size=160 sizedefault=220px alt= title=Skeletal formula of creatine}}{{#if:Template:Chemboximage|
}}
size=160 sizedefault=220px alt= title=Ball and stick model of creatine}}{{#if:Template:Chemboximage|
}}
{{#invoke:InfoboxImage|InfoboxImage center=yes image= size= sizedefault=110px alt=

}}

{{#invoke:InfoboxImage|InfoboxImage center=yes image= size= sizedefault=110px alt=
}}

}}

{{#if:|

}}
size= sizedefault=220px alt=
}}
{{#invoke:InfoboxImage|InfoboxImage center=yes image= size= sizedefault=110px alt=

}}

{{#invoke:InfoboxImage|InfoboxImage center=yes image= size= sizedefault=110px alt=
}}

}}

{{#if:|

}}
size= sizedefault=220px alt=
}}
{{#invoke:InfoboxImage|InfoboxImage center=yes image= size= sizedefault=110px alt=

}}

{{#invoke:InfoboxImage|InfoboxImage center=yes image= size= sizedefault=110px alt=
}}

}}

{{#if:|

}}
Pronunciation
Template:Chembox_headerbar
{{#if:|}} Refractive index (n),
Dielectric constantr), etc.
}} Phase behaviour
solid–liquid–gas
{{#if:|}} UV, IR, NMR, MS
no n false off 0 = = ¬ = yes y true on 1 =
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).{{#if:|
}}
{{#if:|}}
#default =
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).{{#if:|
}}
{{#if:|}} }}
{{#ifeq:changed |changed |Template:Cross |{{#if:464366517|Template:Tick}}

}}{{#if:464366517

 verify}} (what is Template:TickTemplate:Cross ?)}}
{{safesubst:#switch: yes no n false off 0 = = ¬ = yes y true on 1 = Infobox references #default = Infobox references

}}

Template:Chembox Footer/tracking{{#invoke:TemplatePar

|check |template=Template:Chembox |all= |opt= Reference= Chembox_ref= IUPACNames= IUPACName= ImageAlt1= ImageAlt2= ImageAlt3= ImageAltL1= ImageAltL2= ImageAltL3= ImageAltR1= ImageAltR2= ImageAltR3= ImageAlt= ImageCaption1= ImageCaption2= ImageCaption3= ImageCaptionL1= ImageNameR1= ImageCaptionL2= ImageCaptionL3= ImageCaptionR1= ImageCaptionR2= ImageCaptionR3= ImageCaptionLR1= ImageCaptionLR2= ImageCaptionLR3= ImageCaption= ImageFile1_Ref= ImageFile1= ImageFile2_Ref= ImageFile2= ImageFile3_Ref= ImageFile3= ImageFileL1_Ref= ImageFileL1= ImageFileL2_Ref= ImageFileL2= ImageFileL3_Ref= ImageFileL3= ImageFileR1_Ref= ImageFileR1= ImageFileR2_Ref= ImageFileR2= ImageFileR3_Ref= ImageFileR3= ImageFile_Ref= ImageFile= ImageName1= ImageName2= ImageName3= ImageNameL1= ImageNameL2= ImageNameL3= ImageNameR2= ImageNameR3= ImageName= ImageSize1= ImageSize2= ImageSize3= ImageSizeL1= ImageSizeL2= ImageSizeL3= ImageSizeR1= ImageSizeR2= ImageSizeR3= ImageSize= Name= OtherNames= pronounce= PIN= Section1= Section2= Section3= Section4= Section5= Section6= Section7= Section8= Section9= SystematicName= Verifiedfields= Watchedfields= verifiedrevid= Verifiedimages= data page pagename= general_note= show_infobox_ref= show_ss_note= show_footer= style= width=

|cat=Chemical articles with unknown parameter in Chembox |format=0|preview=Template:Chembox templatePar/formatPreviewMessage|errNS=0}}

Creatine (Template:IPAc-en or Template:IPAc-en[1][2]) is a nitrogenous organic acid that occurs naturally in vertebrates and helps to supply energy to all cells in the body, primarily muscle. This is achieved by increasing the formation of adenosine triphosphate (ATP). Creatine was identified in 1832 when Michel Eugène Chevreul discovered it as a component of skeletal muscle, which he later named after the Greek word for meat, κρέας (kreas). In solution, creatine is in equilibrium with creatinine.[3]

Biosynthesis

Creatine is naturally produced in the human body from amino acids primarily in the kidney and liver. It is transported in the blood for use by muscles. Approximately 95% of the human body's total creatine is located in skeletal muscle.[4]

Creatine is not an essential nutrient, as it is manufactured in the human body from L-arginine, glycine, and L-methionine.[5]

In humans and animals, approximately half of stored creatine originates from food (about 1 g/day, mainly from meat).[5] A study, involving 18 vegetarians and 24 non-vegetarians, on the effect of creatine in vegetarians showed that total creatine was significantly lower than in non-vegetarians. Since vegetables are not the primary source of creatine, vegetarians can be expected to show lower levels of directly derived muscle creatine. However, the subjects happened to show the same levels after using supplements.[6] Given the fact that creatine can be synthesized from the above mentioned amino acids, protein sources rich in these amino acids can be expected to provide adequate capability of native biosynthesis in the human body.[5]

The enzyme GATM (L-arginine:glycine amidinotransferase (AGAT), EC 2.1.4.1) is a mitochondrial enzyme responsible for catalyzing the first rate-limiting step of creatine biosynthesis, and is primarily expressed in the kidneys and pancreas.[7]

The second enzyme in the pathway (GAMT, Guanidinoacetate N-methyltransferase, EC:2.1.1.2) is primarily expressed in the liver and pancreas.[7]

Genetic deficiencies in the creatine biosynthetic pathway lead to various severe neurological defects.[8] Clinically, there are three distinct disorders of creatine metabolism. Deficiencies of the two synthetic enzymes can cause L-arginine:glycine amidinotransferase deficiency and guanidinoacetate methyltransferase deficiency. Both biosynthetic defects are inherited in an autosomal recessive manner. A third defect, creatine transporter defect is caused by mutations in SLC6A8 and inherited in a X-linked manner. This condition is related to the transport of creatine into the brain.[9]

The phosphocreatine system

Creatine, synthesized in the liver and kidney, is transported through the blood and taken up by tissues with high energy demands, such as the brain and skeletal muscle, through an active transport system. The concentration of ATP in skeletal muscle is usually 2-5 mM, which would result in a muscle contraction of only a few seconds.[10] Fortunately, during times of increased energy demands, the phosphagen (or ATP/PCr) system rapidly resynthesizes ATP from ADP with the use of phosphocreatine (PCr) through a reversible reaction with the enzyme creatine kinase (CK). In skeletal muscle, PCr concentrations may reach 20-35 mM or more. Additionally, in most muscles, the ATP regeneration capacity of CK is very high and is therefore not a limiting factor. Although the cellular concentrations of ATP are small, changes are difficult to detect because ATP is continuously and efficiently replenished from the large pools of PCr and CK.[10] Creatine has the ability to increase muscle stores of PCr, potentially increasing the muscle’s ability to resynthesize ATP from ADP to meet increased energy demands.[11] For a review of the creatine kinase system and the pleiotropic actions of creatine and creatine supplementation see.[12]

File:CreatineSynthesisedited.PNG
The pathway for the synthesis of creatine
Arg - Arginine; GATM - Glycine amidinotransferase; GAMT - Guanidinoacetate N-methyltransferase; Gly - Glycine; Met - Methionine; SAH - S-adenosyl homocysteine; SAM - S-adenosyl methionine.
The color scheme is as follows:enzymes, coenzymes and the Met part, substrate names, the Gly part, the Arg part
<div style="clear:left;" />

Health effects

Use as a supplement

Creatine supplements are used by athletes, bodybuilders, wrestlers, sprinters, and others who wish to gain muscle mass, typically consuming 2 to 3 times the amount that could be obtained from a very-high-protein diet.[13] The Mayo Clinic states that creatine has been associated with asthmatic symptoms and warns against consumption by persons with known allergies to creatine.[14]

Recent studies have discredited concerns that creatine supplementation could affect hydration status and heat tolerance and lead to muscle cramping and diarrhea.[15][16]

There are reports of kidney damage with creatine use, such as interstitial nephritis; patients with kidney disease should avoid use of this supplement.[14] In similar manner, liver function may be altered, and caution is advised in those with underlying liver disease, although studies have shown little or no adverse impact on kidney or liver function from oral creatine supplementation.[17] In 2004 the European Food Safety Authority (EFSA) published a record which stated that oral long-term intake of 3g pure creatine per day is risk-free.[18] The reports of damage to the kidneys by creatine supplementation have been scientifically refuted.[19][20]

Long-term administration of large quantities of creatine is reported to increase the production of formaldehyde, which has the potential to cause serious unwanted side-effects. However, this risk is largely theoretical because urinary excretion of formaldehyde, even under heavy creatine supplementation, does not exceed normal limits.[21][22]

Extensive research has shown that oral creatine supplementation at a rate of 5 to 20 grams per day appears to be very safe and largely devoid of adverse side-effects,[23] while at the same time effectively improving the physiological response to resistance exercise, increasing the maximal force production of muscles in both men and women.[24][25]

A meta analysis performed in 2008 found that creatine treatment resulted in no abnormal renal, hepatic, cardiac or muscle function.[26]

While some research indicates that supplementation with pure creatine is safe, many commercially available supplements were found to contain toxic impurities including heavy metals and organic contaminants.[27] A survey of 33 commercially available supplements found that over 50% of them exceeded the European Food Safety Authority recommendations in at least one contaminant.

Pharmacokinetics

Endogenous serum or plasma creatine concentrations in healthy adults are normally in a range of 2–12 mg/L. A single 5 g (5000 mg) oral dose in healthy adults results in a peak plasma creatine level of approximately 120 mg/L at 1–2 hours post-ingestion. Creatine has a fairly short elimination half-life, averaging just less than 3 hours, so to maintain an elevated plasma level it would be necessary to take small oral doses every 3–6 hours throughout the day. After the "loading dose" period (1–2 weeks, 12-24 g a day), it is no longer necessary to maintain a consistently high serum level of creatine. As with most supplements, each person has their own genetic "preset" amount of creatine they can hold. The rest is eliminated as waste. A typical post-loading dose is 2-5 g daily.[28][29][30]

Pregnancy and breastfeeding

There is a lack of scientific information on the effects of creatine supplementation during pregnancy and breastfeeding. Pasteurized cow's milk contains higher levels of creatine than human milk.[31][32]

Treatment of diseases

Template:Science review Creatine has been demonstrated to cause modest increases in strength in people with a variety of neuromuscular disorders.[33] Creatine supplementation has been, and continues to be, investigated as a possible therapeutic approach for the treatment of muscular, neuromuscular, neurological and neurodegenerative diseases (arthritis, congestive heart failure, Parkinson's disease, disuse atrophy, gyrate atrophy, McArdle's disease, Huntington's disease, miscellaneous neuromuscular diseases, mitochondrial diseases, muscular dystrophy, and neuroprotection), and depression.[34]

A study demonstrated that creatine is twice as effective as the prescription drug riluzole in extending the lives of mice with the degenerative neural disease amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease). The neuroprotective effects of creatine in the mouse model of ALS may be due either to an increased availability of energy to injured nerve cells or to a blocking of the chemical pathway that leads to cell death.[35] A similarly promising result has been obtained in prolonging the life of transgenic mice affected by Huntington's disease. Creatine treatment lessened brain atrophy and the formation of intranuclear inclusions, attenuated reductions in striatal N-acetylaspartate, and delayed the development of hyperglycemia.[36]

Treatment of muscle disorders

A meta analysis found that creatine treatment increased muscle strength in muscular dystrophies, and potentially improved functional performance.[37] It has also been implicated in decreasing mutagenesis in DNA[38]

Improved cognitive ability

A placebo-controlled double-blind experiment found that a group of subjects composed of vegetarians and vegans who took 5 grams of creatine per day for six weeks showed a significant improvement on two separate tests of fluid intelligence, Raven's Progressive Matrices, and the backward digit span test from the WAIS. The treatment group was able to repeat longer sequences of numbers from memory and had higher overall IQ scores than the control group. The researchers concluded that "supplementation with creatine significantly increased intelligence compared with placebo."[39] A subsequent study found that creatine supplements improved cognitive ability in the elderly.[40] A study on young adults (0.03 g/kg/day for six weeks, e.g., 2 g/day for a {{safesubst:#invoke:convert|convert}} individual) failed to find any improvements.[41]

See also

References

Metabolic.jpg

Featured disease

Metabolic syndrome is a cluster of the most dangerous heart attack risk factors: diabetes and prediabetes, abdominal obesity, high triglycerides, low HDL cholesterol and high blood pressure.

Affects one in three adults

Affecting about 35 percent of all adults in the United States according to the CDC, metabolic syndrome contributes to weight gain, by causing a state of internal starvation called metabolic starvation. This in turn leads to increases hunger, sugar cravings and increased portions leading to overeating and weight gain.

Cause and effect misunderstood

Since we traditionally thought that the portion control (which in turn was attributed wrongly to poor will power)is the cause of weight gain, rather than the effect of this metabolic starvation, all our traditional ideas about cause and effect of obesity were not only wrong but lead to the “blame the victim” attitude when it comes to obesity.

Secret of weight gain revealed

Secret of weight gain, and metabolic syndrome revealed - it has been recently proven that metabolic syndrome, and the weight gain itself are caused by a process called insulin resistance. Check your metabolic syndrome risk using the free Metabolic syndrome meter. Watch this amazing Ted Med video that reveals the secret of weight loss - Stop blaming the victim for obesity


External links

{{#invoke:Navbox|navbox}}


Cite error: <ref> tags exist, but no <references/> tag was found

WikiMD Sponsors: W8MD Weight Loss, Sleep & Medical Aesthetics


Laser scar treatment before and after

Tired of being overweight or obese? W8MD's insurance weight loss program can HELP

  • W8MD IV Nutrition: Our IM and IV nutrition therapy includes booster shots for B12, vitamin B complex, Vitamin C, Detox treatments and IV nutrition therapy. learn more…
W8MD weight loss locations: Philadelphia weight loss | King of Prussia, PA weight loss | NYC weight loss | NJ weight loss

Medical Aesthetics

Contact us (718) 946-5501 | Why advertise on WikiMD?


Disclaimer: The entire contents of WIKIMD.ORG are for informational purposes only and do not render medical advice or professional services. If you have a medical emergency, you should CALL 911 immediately! Given the nature of the wiki, the information provided may not be accurate and or incorrect. Use the information on this wiki at your own risk! See full Disclaimers.WikiMD is supported by W8MD Weight loss, Poly-Tech Sleep & Medical Aesthetic Centers of America.

Retrieved from "http://www.wikimd.org/wiki/index.php?title=Creatine&oldid=63196"