From WikiMD free medical encyclopedia
Jump to: navigation, search

Gluconeogenesis (abbreviated GNG) is a metabolic pathway that results in the generation of glucose from non-carbohydrate carbon substrates such as pyruvate, lactate, glycerol, glucogenic amino acids, and odd-chain fatty acids.

It is one of the two main mechanisms humans and many other animals use to keep blood glucose levels from dropping too low (hypoglycemia). The other means of maintaining blood glucose levels is through the degradation of glycogen (glycogenolysis).[1]

Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms.[2] In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of kidneys. In ruminants, this tends to be a continuous process.[3] In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly exergonic until ATP or GTP are utilized, effectively making the process endergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type II diabetes, such as metformin, which inhibits glucose formation and stimulates glucose uptake by cells.[4] In ruminants, because metabolizable dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc.[5]


File:Amino acid catabolism.png
Catabolism of proteinogenic amino acids. Amino acids are classified according the abilities of their products to enter gluconeogenesis:[6] Template:Unordered list

In humans the main gluconeogenic precursors are lactate, glycerol (which is a part of the triacylglycerol molecule), alanine and glutamine. Altogether, they account for over 90% of the overall gluconeogenesis.[7] Other glucogenic amino acid as well as all citric acid cycle intermediates, the latter through conversion to oxaloacetate, can also function as substrates for gluconeogenesis.[8] In ruminants, propionate is the principal gluconeogenic substrate.[5][9]

Lactate is transported back to the liver where it is converted into pyruvate by the Cori cycle using the enzyme lactate dehydrogenase. Pyruvate, the first designated substrate of the gluconeogenic pathway, can then be used to generate glucose.[8] Transamination or deamination of amino acids facilitates entering of their carbon skeleton into the cycle directly (as pyruvate or oxaloacetate), or indirectly via the citric acid cycle.

Whether even-chain fatty acids can be converted into glucose in animals has been a longstanding question in biochemistry.[10] It is known that odd-chain fatty acids can be oxidized to yield propionyl CoA, a precursor for succinyl CoA, which can be converted to pyruvate and enter into gluconeogenesis. In plants, specifically seedlings, the glyoxylate cycle can be used to convert fatty acids (acetate) into the primary carbon source of the organism. The glyoxylate cycle produces four-carbon dicarboxylic acids that can enter gluconeogenesis.[8]

In 1995, researchers identified the glyoxylate cycle in nematodes.[11] In addition, the glyoxylate enzymes malate synthase and isocitrate lyase have been found in animal tissues.[12] Genes coding for malate synthase gene have been identified in other [metazoans] including arthropods, echinoderms, and even some vertebrates. Mammals found to possess these genes include monotremes (platypus) and marsupials (opossum) but not placental mammals. Genes for isocitrate lyase are found only in nematodes, in which, it is apparent, they originated in horizontal gene transfer from bacteria.

The existence of glyoxylate cycles in humans has not been established, and it is widely held that fatty acids cannot be converted to glucose in humans directly. However, carbon-14 has been shown to end up in glucose when it is supplied in fatty acids.[13] Despite these findings, it is considered unlikely that the 2-carbon acetyl-CoA derived from the oxidation of fatty acids would produce a net yield of glucose via the citric acid cycle.[10] Put simply, acetic acid (in the form of acetyl-CoA) is used to partially produce glucose; acetyl groups can only form part of the glucose molecules (not the 5th carbon atom) and require extra substrates (such as pyruvate) in order to form the rest of the glucose molecule.


In mammals, gluconeogenesis is restricted to the liver,[14] the kidney[14] and possibly the intestine.[15] However these organs use somewhat different gluconeogenic precursors. The liver uses primarily lactate, alanine and glycerol while the kidney uses lactate, glutamine and glycerol.[16] Propionate is the principal substrate for gluconeogenesis in the ruminant liver, and the ruminant liver may make increased use of gluconeogenic amino acids, e.g. alanine, when glucose demand is increased.[17] The capacity of liver cells to use lactate for gluconeogenesis declines from the preruminant stage to the ruminant stage in calves and lambs.[18] In sheep kidney tissue, very high rates of gluconeogenesis from propionate have been observed.[19] The intestine uses mostly glutamine and glycerol.[15]

In all species, the formation of oxaloacetate from pyruvate and TCA cycle intermediates is restricted to the mitochondrion, and the enzymes that convert Phosphoenolpyruvic acid (PEP) to glucose are found in the cytosol.[20] The location of the enzyme that links these two parts of gluconeogenesis by converting oxaloacetate to PEP, PEP carboxykinase, is variable by species: it can be found entirely within the mitochondria, entirely within the cytosol, or dispersed evenly between the two, as it is in humans.[20] Transport of PEP across the mitochondrial membrane is accomplished by dedicated transport proteins; however no such proteins exist for oxaloacetate.[20] Therefore, in species that lack intra-mitochondrial PEP carboxykinase, oxaloacetate must be converted into malate or aspartate, exported from the mitochondrion, and converted back into oxaloacetate in order to allow gluconeogenesis to continue.[20]

File:Gluconeogenesis pathway.png
Gluconeogenesis pathway with key molecules and enzymes. Many steps are the opposite of those found in the glycolysis.


Gluconeogenesis is a pathway consisting of a series of eleven enzyme-catalyzed reactions. The pathway may begin in the mitochondria or cytoplasm, this being dependent on the substrate being used. Many of the reactions are the reversible steps found in glycolysis.

  • Gluconeogenesis begins in the mitochondria with the formation of oxaloacetate by the carboxylation of pyruvate. This reaction also requires one molecule of ATP, and is catalyzed by pyruvate carboxylase. This enzyme is stimulated by high levels of acetyl-CoA (produced in β-oxidation in the liver) and inhibited by high levels of ADP.
  • Oxaloacetate is reduced to malate using NADH, a step required for its transportation out of the mitochondria.
  • Malate is oxidized to oxaloacetate using NAD+ in the cytosol, where the remaining steps of gluconeogenesis take place.
  • Oxaloacetate is decarboxylated and then phosphorylated to form phosphoenolpyruvate using the enzyme phosphoenolpyruvate carboxykinase. A molecule of GTP is hydrolyzed to GDP during this reaction.
  • The next steps in the reaction are the same as reversed glycolysis. However, fructose-1,6-bisphosphatase converts fructose-1,6-bisphosphate to fructose 6-phosphate, using one water molecule and releasing one phosphate. This is also the rate-limiting step of gluconeogenesis.
  • Glucose-6-phosphate is formed from fructose 6-phosphate by phosphoglucoisomerase. Glucose-6-phosphate can be used in other metabolic pathways or dephosphorylated to free glucose. Whereas free glucose can easily diffuse in and out of the cell, the phosphorylated form (glucose-6-phosphate) is locked in the cell, a mechanism by which intracellular glucose levels are controlled by cells.
  • The final reaction of gluconeogenesis, the formation of glucose, occurs in the lumen of the endoplasmic reticulum, where glucose-6-phosphate is hydrolyzed by glucose-6-phosphatase to produce glucose. Glucose is shuttled into the cytoplasm by glucose transporters located in the endoplasmic reticulum's membrane.


While most steps in gluconeogenesis are the reverse of those found in glycolysis, three regulated and strongly exergonic reactions are replaced with more kinetically favorable reactions. Hexokinase/glucokinase, phosphofructokinase, and pyruvate kinase enzymes of glycolysis are replaced with glucose-6-phosphatase, fructose-1,6-bisphosphatase, and PEP carboxykinase. This system of reciprocal control allow glycolysis and gluconeogenesis to inhibit each other and prevent the formation of a futile cycle.

The majority of the enzymes responsible for gluconeogenesis are found in the cytoplasm; the exceptions are mitochondrial pyruvate carboxylase and, in animals, phosphoenolpyruvate carboxykinase. The latter exists as an isozyme located in both the mitochondrion and the cytosol.[21] The rate of gluconeogenesis is ultimately controlled by the action of a key enzyme, fructose-1,6-bisphosphatase, which is also regulated through signal transduction by cAMP and its phosphorylation.

Most factors that regulate the activity of the gluconeogenesis pathway do so by inhibiting the activity or expression of key enzymes. However, both acetyl CoA and citrate activate gluconeogenesis enzymes (pyruvate carboxylase and fructose-1,6-bisphosphatase, respectively). Due to the reciprocal control of the cycle, acetyl-CoA and citrate also have inhibitory roles in the activity of pyruvate kinase.

Global control of gluconeogenesis is mediated by glucagon (released when blood glucose is low); it triggers phosphorylation of enzymes and regulatory proteins by Protein Kinase A (a cyclic AMP regulated kinase) resulting in inhibition of glycolysis and stimulation of gluconeogenesis. Recent studies have shown that the absence of hepatic glucose production has no major effect on the control of fasting plasma glucose concentration. Compensatory induction of gluconeogenesis occurs in the kidneys and intestine, driven by glucagon, glucocorticoids, and acidosis.[22]


  1. Template:Cite book
  2. Young, J. W. 1977. Gluconeogenesis in cattle: significance and methodology. J. Dairy Sci. 60: 1-15.
  3. Template:PDFlink
  4. 5.0 5.1 Beitz, D. C. 2004. Carbohydrate metabolism. In: Reese, W. O. Dukes' physiology of domestic animals. 12th ed. Cornell Univ. Press. pp. 501-515.
  5. Chapter 20 (Amino Acid Degradation and Synthesis) in: Template:Cite book
  6. Template:Cite pmid
  7. 8.0 8.1 8.2 Template:Cite book
  8. Van Soest, P. J. 1994. Nutritional ecology of the ruminant. 2nd Ed. Cornell Univ. Press. 476 pp.
  9. 10.0 10.1
  10. 14.0 14.1 Template:Cite book
  11. 15.0 15.1
  12. Template:Cite doi
  13. Overton, T. R., J. K. Drackley, C. J. Ottemann-Abbamonte, A. D. Beaulieu, L. S. Emmert and J. H. Clark. 1999. Substrate utilization for hepatic gluconeogenesis is altered by increased glucose demand in ruminants. J. Anim. Sci. 77: 1940-1951.
  14. Donkin, S. S. and L. E. Armentano. 1995. Insulin and glucagon regulation of gluconeogenesis in preruminating and ruminating bovine. J. Anim. Sci. 73: 546-551.
  15. Sasaki, S., K. Ambo, M. Muramatsu and T. Tsuda. 1975. Gluconeogenesis in the kidney-cortex slices of normal fed and starved sheep. Tohoku J. Agr. Res. 26: 20-29.
  16. 20.0 20.1 20.2 20.3 Template:Cite book
  17. Chakravarty, K., Cassuto, H., Resef, L., & Hanson, R.W. (2005) Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Critical Reviews of Biochemistry and Molecular Biology, 40(3), 129-154.

External links

Template:Carbohydrate metabolism Template:Gluconeogenesis Template:MetabolismMap

World's largest food, health, wellness and weight loss encyclopedia

If you are a medical professional or an expert in any field of medicine, please join us in building the world's largest weight loss and wellness encyclopedia created by experts in the field, not by the crowd.

Support our sponsors

Locations for losing weight and sleeping better


North East Philadelphia

King of Prussia

New York

New Jersey

WikiMD Sponsors - W8MD Weight Loss, Sleep and MedSpa Centers

Pronounced weightMD, our state of the art W8MD weight loss, sleep, holistic IV nutrition and aesthetic medicine programs can help you not only to lose weight, and sleep better but also look your best! Since its inception in 2011, W8MD’s insurance physician weight loss program has successfully helped thousands of patients.

W8MD Weight Loss

W8MD’s Physician weight loss is unique in many ways with a comprehensive multidisciplinary approach to weight loss. Weight Loss Success Stories....

W8MD Sleep Services

Sleep medicine program uses state of the art technology to diagnose and treat over 80 different sleep disorders. W8MD Sleep Services…

W8MD Medical Aesthetic Services

Medical aesthetic program offers a wide variety of advanced laser skin treatments including oxygen super facials, photofacials and Affordable Botox. W8MD Aesthetic Services…

IM and IV nutrition therapy includes booster shots for B12, vitamin B complex, Vitamin C, Detox treatments and IV nutrition therapy. W8MD IV Nutrition…

W8MD weight loss | Philadelphia medical weight loss | NYC medical weight loss | NJ medical weight loss

W8MD Weight Loss, Sleep & Medical Aesthetics

Intro to W8MD Weight Loss, Sleep & Medical Aesthetics

Disclaimer: The entire contents of WIKIMD.ORG are for informational purposes only and do not render medical advice or professional services. If you have a medical emergency, you should CALL 911 immediately! Given the nature of the wiki, the information provided may not be accurate and or incorrect. Use the information on this wiki at your own risk! See full Disclaimers.WikiMD is supported by W8MD Weight loss, Poly-Tech Sleep & Medical Aesthetic Centers of America.