Polyhedron
(Redirected from Polyhedral)
Polyhedron
A polyhedron is a three-dimensional shape with flat polygonal faces, straight edges, and vertices. Polyhedra are a central subject of study in geometry, particularly in the field of solid geometry. They can be classified in various ways, including by the number of faces, the types of polygons that form the faces, and the symmetry properties of the shape.
Types of Polyhedra
Polyhedra can be categorized into several types based on their properties:
Regular Polyhedra
Regular polyhedra, also known as the Platonic solids, are highly symmetrical. Each face is the same regular polygon, and the same number of faces meet at each vertex. There are exactly five regular polyhedra:
- Tetrahedron
- Cube (or Hexahedron)
- Octahedron
- Dodecahedron
- Icosahedron
Archimedean Solids
Archimedean solids are polyhedra with identical vertices and faces that are regular polygons, but not all faces are the same. There are 13 Archimedean solids, including the truncated cube and the icosidodecahedron.
Kepler-Poinsot Polyhedra
These are the regular star polyhedra, which include:
- Small stellated dodecahedron
- Great stellated dodecahedron
- Great icosahedron
- Great dodecahedron
Johnson Solids
Johnson solids are strictly convex polyhedra with regular polygonal faces, but they are not uniform. There are 92 Johnson solids, named after Norman Johnson, who first listed them in 1966.
Catalan Solids
Catalan solids are the duals of the Archimedean solids. They are convex polyhedra with faces that are not regular but are congruent.
Other Polyhedra
There are many other types of polyhedra, including:
Properties of Polyhedra
Polyhedra have several important properties that are studied in geometry:
Euler's Formula
For any convex polyhedron, Euler's formula relates the number of vertices \( V \), edges \( E \), and faces \( F \) as follows:
\[ V - E + F = 2 \]
This formula is a fundamental result in the topology of polyhedra.
Symmetry
Polyhedra can exhibit various types of symmetry, including rotational and reflective symmetry. The symmetry group of a polyhedron is a mathematical concept that describes these symmetries.
Dual Polyhedra
Every polyhedron has a dual polyhedron, where the vertices of one correspond to the faces of the other and vice versa. For example, the cube and the octahedron are duals.
Applications of Polyhedra
Polyhedra have applications in various fields, including architecture, art, and molecular biology. In chemistry, for example, the structure of certain molecules can be modeled as polyhedra.
Related Pages
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Contributors: Prab R. Tumpati, MD