Ribonuclease T1
Ribonuclease T1 (RNase T1) is an enzyme that catalyzes the hydrolysis of RNA into smaller components. It specifically cleaves single-stranded RNA after guanine residues, thus producing oligonucleotides with 2',3'-cyclic phosphate termini. RNase T1 is widely used in molecular biology for sequence and structure studies of RNA. It is derived from the fungus Aspergillus oryzae.
Function
RNase T1 plays a crucial role in the degradation of RNA by specifically recognizing and cleaving the phosphodiester bond following a guanine nucleotide. This specificity allows for the detailed analysis of RNA sequences and the study of RNA structure and function. The enzyme's activity is essential in various biological processes, including the maturation and turnover of RNA molecules within cells.
Structure
The enzyme is a small, single-chain polypeptide that contains a high proportion of alpha-helical and beta-sheet structures, which contribute to its stability and function. The active site of RNase T1 contains residues that are critical for substrate recognition and catalysis. These include histidine, which acts as a general base in the catalytic mechanism, and glutamic acid, which helps in substrate binding.
Mechanism
RNase T1 catalyzes the cleavage of RNA via a two-step mechanism. The first step involves the enzyme binding to an RNA substrate with a guanine base exposed. The histidine residue in the active site then acts as a base to abstract a proton from the 2'-hydroxyl group of the ribose, facilitating a nucleophilic attack on the adjacent phosphodiester bond. This results in the formation of a 2',3'-cyclic phosphate intermediate. In the second step, a water molecule, activated by the enzyme, attacks the cyclic phosphate, leading to the product release with a 3'-phosphate terminus.
Applications
RNase T1 is extensively used in molecular biology and biochemistry for RNA sequencing, structure analysis, and the study of RNA-protein interactions. Its specificity for guanine allows for the precise cleavage of RNA, making it a valuable tool for mapping RNA structures and identifying functional RNA motifs within larger RNA molecules.
Clinical Significance
While RNase T1 itself is not directly involved in human disease, the study of its function and mechanism provides insights into the broader field of RNA metabolism and its implications in various diseases, including cancer and viral infections. Understanding how RNase T1 and similar enzymes interact with RNA can help in the development of therapeutic strategies targeting RNA molecules.
See Also
References
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD