Tensor rank decomposition
Tensor rank decomposition, also known as canonical polyadic decomposition (CPD) or PARAFAC decomposition, is a form of tensor decomposition that generalizes the matrix singular value decomposition (SVD) to higher-order tensors. Tensor rank decomposition expresses a tensor as a sum of a finite number of rank-one tensors. This method is widely used in various fields such as signal processing, neuroscience, and data analysis, offering a powerful tool for the analysis of multi-way data.
Overview
A tensor is a multidimensional array, generalizing matrices to higher dimensions. The rank of a tensor, analogous to the rank of a matrix, is the minimum number of rank-one tensors that sum to the tensor. A rank-one tensor is a tensor that can be written as the outer product of vectors. Tensor rank decomposition aims to find such a representation, decomposing a given tensor into a sum of rank-one tensors.
Mathematical Formulation
Given a tensor \(T \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}\), the goal of tensor rank decomposition is to express \(T\) as a sum of \(R\) rank-one tensors, where \(R\) is the rank of \(T\). This can be written as:
\[T = \sum_{r=1}^R a_r^{(1)} \otimes a_r^{(2)} \otimes \cdots \otimes a_r^{(N)}\]
Here, \(a_r^{(n)}\) are vectors, and \(\otimes\) denotes the outer product. The smallest number \(R\) for which such a decomposition exists is called the tensor rank.
Applications
Tensor rank decomposition has found applications in various domains:
- In signal processing, it is used for blind source separation and analysis of multi-way signals. - In neuroscience, it helps in the analysis of brain imaging data to identify patterns of neural activity. - In data analysis and machine learning, it is employed for dimensionality reduction, data compression, and feature extraction.
Challenges
One of the main challenges in tensor rank decomposition is its computational complexity. The problem of finding the tensor rank is NP-hard, making exact decomposition infeasible for large tensors. Approximation algorithms and heuristics are commonly used to find near-optimal solutions.
Software and Tools
Several software packages and libraries offer implementations of tensor rank decomposition, including MATLAB's Tensor Toolbox, Python's TensorLy, and the R package rTensor.
See Also
References
This article is a mathematics-related stub. You can help WikiMD by expanding it!
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD