Unit cell
Unit cell is the smallest structural unit or building block of a crystal structure that, when repeated in all three spatial dimensions, defines the entire crystal. It is a mathematical abstraction that represents the symmetry and structure of the crystal lattice, which is a three-dimensional array of points coinciding with atom positions (or groups of atoms) that are periodically arranged in such a way that the crystal looks the same from any equivalent point.
Definition and Characteristics
A unit cell is characterized by its dimensions along the three axes (a, b, and c), the angles between them (α, β, and γ), and the positions of the atoms within the cell. These parameters are not arbitrary but are determined by the nature of the atomic or molecular constituents of the crystal and the forces between them. The unit cell's geometry can be classified into seven crystal systems based on the lengths of its axes and the angles between them: cubic, tetragonal, orthorhombic, hexagonal, trigonal, monoclinic, and triclinic.
Types of Unit Cells
There are several types of unit cells, each defined by the positions of atoms within the cell and the cell's symmetry properties. The most common types are:
- Primitive (P) unit cell: Atoms are located only at the corners of the cell.
- Body-centered (I) unit cell: In addition to the corner atoms, there is one atom at the center of the cell.
- Face-centered (F) unit cell: Atoms are located at each of the corners and the centers of all the faces of the cell.
- Base-centered (C) unit cell: Atoms are at each of the corners and the center of two opposite faces.
Volume of a Unit Cell
The volume of a unit cell can be calculated using the formula: \[ V = abc\sqrt{1 - \cos^2(\alpha) - \cos^2(\beta) - \cos^2(\gamma) + 2\cos(\alpha)\cos(\beta)\cos(\gamma)} \] where a, b, and c are the cell edges, and α, β, and γ are the angles between them.
Importance in Material Science
Understanding the unit cell is crucial in material science, chemistry, and physics because it helps scientists predict the properties of materials, such as their electrical conductivity, magnetic properties, and mechanical strength. By analyzing the unit cell, researchers can infer the arrangement of atoms in a material and how they interact with each other, which in turn influences the material's overall properties.
Applications
Unit cells are used in the determination of crystal structures through techniques such as X-ray diffraction and neutron diffraction. These methods allow for the precise measurement of the unit cell dimensions and the positions of atoms within the cell, providing valuable information for the development of new materials and the improvement of existing ones.
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD