Glycated hemoglobin

From WikiMD
Jump to navigation Jump to search

Glycated hemoglobin (hemoglobin A1c, HbA1c, A1C, or Hb1c; sometimes also HbA1c) is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over prolonged periods of time. It is formed in a non-enzymatic glycation pathway by hemoglobin's exposure to plasma glucose. Normal levels of glucose produce a normal amount of glycated hemoglobin. As the average amount of plasma glucose increases, the fraction of glycated hemoglobin increases in a predictable way. This serves as a marker for average blood glucose levels over the previous months prior to the measurement.

In diabetes mellitus, higher amounts of glycated hemoglobin, indicating poorer control of blood glucose levels, have been associated with cardiovascular disease, nephropathy, and retinopathy. Monitoring HbA1c in type 1 diabetic patients may improve outcomes.[1]

History

Hemoglobin A1c was first separated from other forms of hemoglobin by Huisman and Meyering in 1958 using a chromatographic column.[2] It was first characterized as a glycoprotein by Bookchin and Gallop in 1968.[3] Its increase in diabetes was first described in 1969 by Samuel Rahbar et al.[4] The reactions leading to its formation were characterized by Bunn and his coworkers in 1975.[5] The use of hemoglobin A1c for monitoring the degree of control of glucose metabolism in diabetic patients was proposed in 1976 by Anthony Cerami, Ronald Koenig and coworkers.[6]

Principle

Glycation of proteins is a frequent occurrence, but in the case of hemoglobin, a nonenzymatic reaction occurs between glucose and the N-end of the beta chain. This forms a Schiff base which is itself converted to 1-deoxyfructose. This rearrangement is known as Amadori rearrangement.

When blood glucose levels are high, glucose molecules attach to the hemoglobin in red blood cells. The longer hyperglycemia occurs in blood, the more glucose binds to hemoglobin in the red blood cells and the higher the glycated hemoglobin.

Glucose levels are intermittently raised in portal vessels carrying absorbed glucose to the liver for regulation. Passing red cells will have increased glycation after sugary food intake.[citation needed]

Once a hemoglobin molecule is glycated, it remains that way. A buildup of glycated hemoglobin within the red cell, therefore, reflects the average level of glucose to which the cell has been exposed during its life-cycle. Measuring glycated hemoglobin assesses the effectiveness of therapy by monitoring long-term serum glucose regulation. The HbA1c level is proportional to average blood glucose concentration over the previous four weeks to three months. Some researchers state that the major proportion of its value is weighted toward the most recent 2 to 4 weeks.[7] This is also supported by the data from actual practice showing that HbA1c level improved significantly already after 20 days since glucose-lowering treatment intensification.[8]

Measuring A1C

A number of techniques are used to measure A1C.

Laboratories use:

Point of care (e.g., doctor's office) devices use:

  • Immunoassay
  • Boronate affinity chromatography

In the United States, A1C testing laboratories are certified by the National Glycohemoglobin Standardization Program (NGSP) to standardise them against the results of the 1993 Diabetes Control and Complications Trial (DCCT).[9] An additional percentage scale, Mono S is in use by Sweden and KO500 is in Japan.[10][11]

Switch to IFCC units

The American Diabetes Association (ADA), European Association for the Study of Diabetes (EASD) and International Diabetes Federation (IDF) have agreed that, in the future, HbA1c is to be reported in the International Federation of Clinical Chemistry (IFCC) units.[12] IFCC reporting was introduced in Europe except for the UK in 2003;[13] the UK carried out dual reporting from 1 June 2009 [14] until 1 October 2011.

Conversion between DCCT and IFCC is by the following equation:[15]

Template:Equation

Interpretation of results

Laboratory results may differ depending on the analytical technique, the age of the subject, and biological variation among individuals. Two individuals with the same average blood sugar can have A1C values that differ by as much as 3 percentage points. Results can be unreliable in many circumstances, such as after blood loss, for example, after surgery, blood transfusions, anemia, or high erythrocyte turnover; in the presence of chronic renal or liver disease; after administration of high-dose vitamin C; or erythropoetin treatment.[16] In general, the reference range (that found in healthy persons), is about 20–40 mmol/mol (4–5.9 DCCT %).[17]

Higher levels of HbA1c are found in people with persistently elevated blood sugar, as in diabetes mellitus. While diabetic patient treatment goals vary, many include a target range of HbA1c values. A diabetic person with good glucose control has a HbA1c level that is close to or within the reference range. The International Diabetes Federation and American College of Endocrinology recommend HbA1c values below 48 mmol/mol (6.5 DCCT %), while American Diabetes Association recommends that the HbA1c be below 53 mmol/mol (7.0 DCCT %) for most patients.[18] Recent results from large trials suggest that a target below 53 mmol/mol (7 DCCT %) may be excessive: Below 53 mmol/mol (7 DCCT %) the health benefits of reduced A1C become smaller, and the intensive glycemic control required to reach this level leads to an increased rate of dangerous hypoglycemic episodes.[19]

A retrospective study of 47,970 diabetes patients found that patients with an A1C more than 48 mmol/mol (6.5 DCCT %) had an increased mortality rate,[20] but a later international study contradicted these findings.[21][22]

A review of the UKPDS ACCORD, ADVANCE and VADT trials estimated that the risks of the main complications of diabetes (retinopathy, nephropathy, neuropathy and macrovascular disease) decreased with approximately 3% for every 1 mmol/mol decrease in HbA1c.[23]

Practitioners must consider an individual patient's health, his/her risk of hypoglycemia, and his/her specific health risks when setting a target A1C level. Because patients are responsible for averting or responding to their own hypoglycemic episodes, the patient's input and the doctor's assessment of the patient's self-care skills are also important.

Persistent elevations in blood sugar (and, therefore, HbA1c) increase the risk of long-term vascular complications of diabetes such as coronary disease, heart attack, stroke, heart failure, kidney failure, blindness, erectile dysfunction, neuropathy (loss of sensation, especially in the feet), gangrene, and gastroparesis (slowed emptying of the stomach). Poor blood glucose control also increases the risk of short-term complications of surgery such as poor wound healing.

Lower-than-expected levels of HbA1c can be seen in people with shortened red blood cell lifespan, such as with glucose-6-phosphate dehydrogenase deficiency, sickle-cell disease, or any other condition causing premature red blood cell death. Blood donation will result in rapid replacement of lost RBCs with newly formed red blood cells. Since these new RBCs will have only existed for a short period of time, their presence will lead HbA1c to underestimate the actual average levels. There may also be distortions resulting from blood donation which occurred as long as two months before due to an abnormal synchronization of the age of the RBCs, resulting in an older than normal average blood cell life (resulting in an overestimate of actual average blood glucose levels). Conversely, higher-than-expected levels can be seen in people with a longer red blood cell lifespan, such as with Vitamin B12 or folate deficiency.[24]

The approximate mapping between HbA1c values given in DCCT percentage (%) and eAG (estimated average glucose) measurements is given by the following equation:[16]

eAG(mg/dl) = 28.7 × A1C − 46.7
eAG(mmol/l) = 1.59 × A1C − 2.59
Data in parentheses are 95% confidence intervals
HbA1c eAG (estimated average glucose)
(%) (mmol/mol)[25] (mmol/L) (mg/dL)
5 31 5.4 (4.2–6.7) 97 (76–120)
6 42 7.0 (5.5–8.5) 126 (100–152)
7 53 8.6 (6.8–10.3) 154 (123–185)
8 64 10.2 (8.1–12.1) 183 (147–217)
9 75 11.8 (9.4–13.9) 212 (170–249)
10 86 13.4 (10.7–15.7) 240 (193–282)
11 97 14.9 (12.0–17.5) 269 (217–314)
12 108 16.5 (13.3–19.3) 298 (240–347)
13 119 18.1 (15–21) 326 (260–380)
14 130 19.7 (16–23) 355 (290–410)
15 140 21.3 (17–25) 384 (310–440)
16 151 22.9 (19–26) 413 (330–480)
17 162 24.5 (20–28) 441 (460–510)
18 173 26.1 (21–30) 470 (380–540)
19 184 27.7 (23–32) 499 (410–570)

The 2010 American Diabetes Association Standards of Medical Care in Diabetes added the A1c ≥ 48 mmol/mol (≥6.5 DCCT %) as another criterion for the diagnosis of diabetes.[26]

Indications and use

Glycated hemoglobin testing is recommended for both (a) checking the blood sugar control in people who might be pre-diabetic and (b) monitoring blood sugar control in patients with more elevated levels, termed diabetes mellitus. There is a significant proportion of people who are unaware of their elevated HbA1c level before they have blood lab work.[27] For a single blood sample, it provides far more revealing information on glycemic behavior than a fasting blood sugar value. However, fasting blood sugar tests are crucial in making treatment decisions. The American Diabetes Association guidelines are similar to others in advising that the glycated hemoglobin test be performed at least two times a year in patients with diabetes that are meeting treatment goals (and that have stable glycemic control) and quarterly in patients with diabetes whose therapy has changed or that are not meeting glycemic goals.[28]

Glycated hemoglobin measurement is not appropriate where there has been a change in diet or treatment within 6 weeks. Likewise, the test assumes a normal red blood cell aging process and mix of hemoglobin subtypes (predominantly HbA in normal adults). Hence, people with recent blood loss, hemolytic anemia, or genetic differences in the hemoglobin molecule (hemoglobinopathy) such as sickle-cell disease and other conditions, as well as those that have donated blood recently, are not suitable for this test.

Due to glycated hemoglobin's variability (as shown in the table above), additional measures should be checked in patients at or near recommended goals. People with hemoglobin A1C values at 64 mmol/mol or less should be provided additional testing to determine whether the HbA1c values are due to averaging out high blood glucose (hyperglycemia) with low blood glucose (hypoglycemia) or the HbA1c is more reflective of an elevated blood glucose that does not vary much throughout the day. Devices such as continuous blood glucose monitoring allow people with diabetes to determine their blood glucose levels on a continuous basis, testing every few minutes. Continuous use of blood glucose monitors is becoming more common, and the devices are covered by many health insurance plans but not by Medicare in the United States. The supplies tend to be expensive, since the sensors must be changed at least weekly. Another test that is useful in determining if HbA1c values are due to wide variations of blood glucose throughout the day is 1,5 Anhydroglucitol, also known as GlycoMark. GlycoMark reflects only the times that the person experiences hyperglycemia above 180 mg/dL over a two-week period.

Concentrations of hemoglobin A1 (HbA1) are increased, both in diabetic patients and in patients with renal failure, when measured by ion-exchange chromatography. The thiobarbituric acid method (a chemical method specific for the detection of glycation) shows that patients with renal failure have values for glycated hemoglobin similar to those observed in normal subjects, suggesting that the high values in these patients are a result of binding of something other than glucose to hemoglobin.[29]

In autoimmune hemolytic anemia, concentrations of hemoglobin A1 (HbA1) is undetectable. Administration of prednisolone (PSL) will allow the HbA1 to be detected.[30] The alternative fructosamine test may be used in these circumstances and it also reflects an average of blood glucose levels over the preceding 2 to 3 weeks.

All the major institutions like International Expert Committee Report, drawn from the International Diabetes Federation (IDF), the European Association for the Study of diabetes (EASD), and the American Diabetes Association (ADA), suggests the A1C level of 48 mmol/mol (6.5 DCCT %) as a diagnostic level.[31] The Committee Report further states that, when A1C testing cannot be done, the fasting and glucose tolerance tests be done.

Diagnosis of diabetes during pregnancy continues to require fasting and glucose tolerance measurements for gestational diabetes, and not the glycated hemoglobin.

Planning treatment response

A high A1c correlates with health problems. Because of this, when a patient has a high A1c, a physician may recommend treatment which would lead to the patient having improved health and therefore a lowered A1c.

For most adults age 65 or older, the use of medications to achieve an A1c lower than 7.5% is discouraged.[32] For healthy adults in this age category and who have a long life expectancy, 7.0 – 7.5% is a reasonable glycemic target.[32] For persons with a life expectancy of more than 10 years and some comorbidity, 7.5-8.0% is a good range, and 8.0-9.0% is reasonable for persons with less life expectancy and multiple morbidities.[32] For older populations, evidence does not show that lowering A1c more than moderately will improve health but does show that it causes hypoglycemia.[32]

For younger adults, evidence shows that harms including increased mortality can result from using medication to seek A1c below 7.0%.[32]

Modification by exercise training

A meta-analysis of research done to identify the effect of two different kinds of training programs (combined aerobic and eccentric resistance exercise program and aerobic exercise only) on the glycated hemoglobin levels of individuals with T2DM found that the effect of combining resistance exercise with aerobic exercise improved the glucose control more than just the aerobics alone. The average effect of the training programs included reductions of glycated hemoglobin of 9 mmol/mol (0.8 percentage points), which was a result similar to that of long-term diet and drug or insulin therapy (which result in a reduction of 6.5–9.0 mmol/mol (i.e. 0.6–0.8 points).[33]

Standardization and traceability

HbA1c is now standardized & traceable to IFCC methods HPLC-CE & HPLC-MS. A new unit (mmol/mol) is used as part of this standardization.

See also

References

  1. Larsen ML, Hørder M, Mogensen EF (1990). "Effect of long-term monitoring of glycosylated haemoglobin levels in insulin-dependent diabetes mellitus". N. Engl. J. Med. 323 (15): 1021–5. doi:10.1056/NEJM199010113231503. PMID 2215560.CS1 maint: multiple names: authors list (link)
  2. Huisman TH, Martis EA, Dozy A (1958). "Chromatography of hemoglobin types on carboxymethylcellulose". J. Lab. Clin. Med. 52 (2): 312–27. PMID 13564011.CS1 maint: multiple names: authors list (link)
  3. Bookchin RM, Gallop PM (1968). "Structure of haemoglobin A1c: nature of the N-terminal beta chain blocking group". Biochem. Biophys. Res. Commun. 32 (1): 86–93. doi:10.1016/0006-291X(68)90430-0. PMID 4874776.
  4. Rahbar S, Blumenfeld O, Ranney HM (1969). "Studies of an unusual hemoglobin in patients with diabetes mellitus". Biochem. Biophys. Res. Commun. 36 (5): 838–43. doi:10.1016/0006-291X(69)90685-8. PMID 5808299.CS1 maint: multiple names: authors list (link)
  5. Bunn HF, Haney DN, Gabbay KH, Gallop PM (1975). "Further identification of the nature and linkage of the carbohydrate in haemoglobin A1c". Biochem. Biophys. Res. Commun. 67 (1): 103–9. doi:10.1016/0006-291X(75)90289-2. PMID 1201013.CS1 maint: multiple names: authors list (link)
  6. Koenig RJ, Peterson CM, Jones RL, Saudek C, Lehrman M, Cerami A (1976). "Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus". N. Engl. J. Med. 295 (8): 417–20. doi:10.1056/NEJM197608192950804. PMID 934240.CS1 maint: multiple names: authors list (link)
  7. "Hemoglobin A1c Fact Sheet". Michigan Diabetes Research & Training Center. Retrieved 2007-12-26.
  8. Sidorenkov G, Haaijer-Ruskamp FM, de Zeeuw D, Denig P. (2011). "A longitudinal study examining adherence to guidelines in diabetes care according to different definitions of adequacy and timeliness". PLoS ONE. 6 (9): e24278. PMC 3169586. PMID 21931669.CS1 maint: multiple names: authors list (link)
  9. Developing Point of care HbA1c tests for Diabetes monitoring, Barry Plant, Originally Published IVDT July/August 2008
  10. [Clinical Chemistry 50:1 166–174 (2004)]
  11. 11.0 11.1 HbA1c in a new way By the Swedish Diabetes Association. Retrieved Mars 2011
  12. Geistanger A, Arends S, Berding C; et al. (August 2008). "Statistical methods for monitoring the relationship between the IFCC reference measurement procedure for hemoglobin A1c and the designated comparison methods in the United States, Japan, and Sweden". Clin. Chem. 54 (8): 1379–85. doi:10.1373/clinchem.2008.103556. PMID 18539643. Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  13. Manley S, John WG, Marshall S (July 2004). "Introduction of IFCC reference method for calibration of HbA: implications for clinical care". Diabet. Med. 21 (7): 673–6. doi:10.1111/j.1464-5491.2004.01311.x. PMID 15209757.CS1 maint: multiple names: authors list (link)
  14. "Standardisation of the reference method for the measurement of HbA1c to improve diabetes care" (PDF). The Association for Clinical Biochemistry and Diabetss UK. April 2008. Retrieved 2009-07-02.
  15. "HbA1c Standardisation For Laboratory Professionals" (PDF). Diabetes UK. Retrieved 2009-07-02.
  16. 16.0 16.1 Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ (2008). "Translating the A1C assay into estimated average glucose values". Diabetes Care. 31 (8): 1473–8. doi:10.2337/dc08-0545. PMC 2742903. PMID 18540046.CS1 maint: multiple names: authors list (link)
  17. "Hemoglobin A1c Test". MedicineNet.com. Retrieved 2007-12-26.
  18. "Executive Summary: Standards of medical care in diabetes—2009". Diabetes Care. 32: S6–S12. 2009. doi:10.2337/dc09-S006.
  19. Lehman R, Krumholz HM (2009). "Tight control of blood glucose in long standing type 2 diabetes". Brit Med J. 338: b800. doi:10.1136/bmj.b800.
  20. doi:10.1016/S0140-6736(09)61969-3
  21. "ADVANCE Study Contradicts ACCORD Findings". Diabetes Self-Management. 2008-03-07. Retrieved 2013-06-10.
  22. "The largest ever study of diabetes shows intensive glucose control reduces serious complications – ADVANCE". Advance-trial.com. Retrieved 2013-06-10.
  23. Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 20644204, please use {{cite journal}} with |pmid=20644204 instead.
  24. Kilpatrick ES, Bloomgarden ZT, Zimmet PZ (2009). "Is haemoglobin A1c a step forward for diagnosing diabetes?". BMJ. 339: b4432. doi:10.1136/bmj.b4432. PMID 19903702.CS1 maint: multiple names: authors list (link)
  25. Change to HbA1c values at Diabetes UK, 2013
  26. "Executive summary: Standards of medical care in diabetes—2010". Diabetes Care. 33 (Suppl 1): S4–10. January 2010. doi:10.2337/dc10-S004. PMC 2797389. PMID 20042774.
  27. Walid MS, Newman BF, Yelverton JC, Nutter JP, Ajjan M, Robinson JS Jr (2009). "Prevalence of previously unknown elevation of glycated hemoglobin (HbA1c) in spine surgery patients and impact on length of stay and total cost". J Hosp Med. 5 (1): NA. doi:10.1002/jhm.541. PMID 19753643.CS1 maint: multiple names: authors list (link)
  28. American Diabetes Association (2007). "Standards of medical care in diabetes--2007". Diabetes Care. 30 (Suppl 1): S4–S41. doi:10.2337/dc07-S004. PMID 17192377.
  29. "Glycated Hemoglobin in Uremic Patients as Measured by Affinity and Ion-Exchange Chromatography" (PDF). clinchem.com. Retrieved 2009-08-31.
  30. "Undetectable Glycosolated Hemoglobin in Autoimmune Hemolytic Anemia" (PDF). repository.oai.yamaguchi-u.ac.jp. Retrieved 2009-08-31.
  31. The International Expert Committee (2009). "International expert committee report on the role of the A1C assay in the diagnosis of diabetes". Diabetes Care. 32 (7): 1327–1334. doi:10.2337/dc09-9033. PMC 2699715. PMID 19502545.
  32. 32.0 32.1 32.2 32.3 32.4 American Geriatrics Society, "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation, American Geriatrics Society, retrieved August 1, 2013, which cites
    • Action to Control Cardiovascular Risk in Diabetes Study Group; Gerstein, H.; Miller, M.; Byington, R.; Goff Jr, D.; Bigger, J.; Buse, J.; Cushman, W.; Genuth, S.; Ismail-Beigi, F.; Grimm Jr; Probstfield, J. L.; Simons-Morton, D. G.; Friedewald, W. T. (2008). "Effects of Intensive Glucose Lowering in Type 2 Diabetes". New England Journal of Medicine. 358 (24): 2545–2559. doi:10.1056/NEJMoa0802743. PMID 18539917.
    • Accord Study, G.; Gerstein, H. C.; Miller, M. E.; Genuth, S.; Ismail-Beigi, F.; Buse, J. B.; Goff Jr, D. C.; Probstfield, J. L.; Cushman, W. C.; Ginsberg, H. N.; Bigger, J. T.; Grimm Jr, R. H.; Byington, R. P.; Rosenberg, Y. D.; Friedewald, W. T. (2011). "Long-Term Effects of Intensive Glucose Lowering on Cardiovascular Outcomes". New England Journal of Medicine. 364 (9): 818–828. doi:10.1056/NEJMoa1006524. PMID 21366473.
    • Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P. D.; Zieve, F. J.; Marks, J.; Davis, S. N.; Hayward, R.; Warren, S. R.; Goldman, S.; McCarren, M.; Vitek, M. E.; Henderson, W. G.; Huang, G. D.; Vadt, I. (2009). "Glucose Control and Vascular Complications in Veterans with Type 2 Diabetes". New England Journal of Medicine. 360 (2): 129–139. doi:10.1056/NEJMoa0808431. PMID 19092145.
    • Advance Collaborative, G.; Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; Hamet, P.; Harrap, S.; Heller, S.; Liu, L.; Mancia, G.; Mogensen, C. E.; Pan, C.; Poulter, N.; Rodgers, A.; Williams, B.; Bompoint, S.; De Galan, B. E.; Joshi, R.; Travert, F. (2008). "Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes". New England Journal of Medicine. 358 (24): 2560–2572. doi:10.1056/NEJMoa0802987. PMID 18539916.
    • "Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group". Lancet. 352 (9131): 854–865. 1998. doi:10.1016/S0140-6736(98)07037-8. PMID 9742977.
    • Montori, V. M.; Fernández-Balsells, M. (2009). "Glycemic control in type 2 diabetes: Time for an evidence-based about-face?". Annals of internal medicine. 150 (11): 803–808. doi:10.7326/0003-4819-150-11-200906020-00008. PMID 19380837.
    • Finucane, T. E. (2012). ""Tight Control" in Geriatrics: The Emperor Wears a Thong". Journal of the American Geriatrics Society. 60 (8): 1571–1575. doi:10.1111/j.1532-5415.2012.04057.x. PMID 22881447.
    • Sue Kirkman, M.; Briscoe, V. J.; Clark, N.; Florez, H.; Haas, L. B.; Halter, J. B.; Huang, E. S.; Korytkowski, M. T.; Munshi, M. N.; Odegard, P. S.; Pratley, R. E.; Swift, C. S.; Consensus Development Conference on Diabetes Older Adults (2012). "Diabetes in Older Adults: A Consensus Report". Journal of the American Geriatrics Society. 60 (12): 2342–2356. doi:10.1111/jgs.12035. PMID 23106132.
  33. Marcus RL, Smith S, Morrell G; et al. (November 2008). "Comparison of combined aerobic and high-force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus". Phys Ther. 88 (11): 1345–54. doi:10.2522/ptj.20080124. PMC 2579905. PMID 18801851. Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
Wikipedia

Le Fanu J. Doctor's diary. Daily Telegraph page 27 10/6/2013

External links

Template:Blood tests Template:Globins

Support our sponsors

W8MD weight loss, sleep and medspa centers sponsors WikiMD.

W8MD's Locations for losing weight, sleeping better and looking your best

Philadelphia

weight loss Philadelphia | Sleep center Philadelphia

King of Prussia

Lose weight King of Prussia | Sleep doctor King of Prussia

New York

Weight loss NYC | Fast weight loss NYC | Lose weight NYC | Sleep apnea NYC

New Jersey

New Jersey Weight Loss, Sleep and Medical Spa Cherry Hill NJ

Other W8MD blogs

Lorcaserin weight loss | Qsymia weight loss | Phentermine weight loss | Weight loss blog | Free weight loss | Saxenda weight loss | Contrave weight loss

W8mdlogo.png
Tired of being overweight? W8MD can help


W8MD Weight Loss, Sleep & Aesthetic Services

Pennsylvania

Call 215-676-2334

New York

2632 E 21st Street Ste L2 Brooklyn New York 11235.

W8MD weight loss now in Manhattan, New York City

Call 718-946-5500

New Jersey

  • W8MD Weight Loss, Sleep & MedSpa in Cherry Hill, NJ at 140 E. Evesham Road, Cherry Hill, NJ 08003.

Call 800-W8MD-007

W8MD weight loss | Philadelphia medical weight loss | NYC medical weight loss


W8MD's insurance weight loss program

W8MD can help?

W8md-short.jpg

W8MD’s insurance medical weight loss program is one of the best ways to lose weight fast in NYC, King Of Prussia, Philadelphia, New Jersey and other places.

  • Our weight loss program is based on clinically proven measures to help you lose weight.
  • Our experienced weight loss doctors understand the complex causes of weight gain.
  • We use the best tools to help burn fat fast and effectively unlike many fad diets that make you lose weight by losing muscle.
  • We offer delicious, low cost and affordable weight loss supplements or meal replacements to help reduce caloric intake and burn fat.
  • We offer FDA approved weight loss medications or diet pills to help control hunger, reduce cravings and burn unhealthy fat.

Prab R. Tumpati, MD Founder, WikiMD & W8MD

Dr Tumpati is a board certified physician with significant practice experience in managing sleep disorders, internal medicine, aesthetic and obesity medicine. As one of the few physicians that have the privilege of a fellowship training in Obesity Medicine, Dr Tumpati is very passionate about educating the public and physicians about how some of the nutritional concepts were misunderstood. As the founder of W8MD Weight Loss, Sleep and MedSpa centers, Dr Tumpati is the medical director for the New York, New Jersey and Pennsylvania locations and commutes weekly between the locations.

Places for Glycated hemoglobin

  • W8MD’s insurance weight loss programs one of the best ways to lose weight fast in NYC, King Of Prussia, Philadelphia, New Jersey and other places.

Popular weight loss searches

W8MD logo

Ad. Tired of being overweight?. W8MD's insurance weight loss can HELP*

Lose weight King of Prussia, PA | Lose weight NYC | Lose weight NJ | Lose weight Philadelphia | Advertise

Quick links: Medicine Portal | Encyclopedia‏‎‏‎ | Gray's Anatomy‏‎ | Topics‏‎ |‏‎ Diseases‏‎ | Drugs | Wellness | Obesity‏‎ | Metabolic syndrome | Weight loss*
Disclaimer: The entire contents of WIKIMD.ORG are for informational purposes only and do not render medical advice or professional services. If you have a medical emergency, you should CALL 911 immediately! Given the nature of the wiki, the information provided may not be accurate, misleading and or incorrect. Use the information on this wiki at your own risk! See full Disclaimer.
Link to this page: <a href="http://www.wikimd.org/wiki/Glycated_hemoglobin">Glycated hemoglobin</a>

  • Individual results may vary for weight loss from our sponsors.

Our sponsors WikiMD is supported by W8MD weight loss, sleep and medical aesthetic centers.